

Shock Analysis of On-board Equipment Submitted to Underwater Explosion

Presenter: Enes TASDELEN

Supervisor: Pr. Hervé Le Sourne

CONTENTS

- 1. BACKGROUND
- 2. OBJECTIVES
- 3. DYNAMIC DESIGN ANALYSIS METHOD (DDAM)
- 4. SHOCK RESPONSE SPECTRUM (SRS)
- 5. DDAM ANALYSIS OF A CANTILEVER BEAM
- 6. SHOCK ANALYSIS OF AN ANTENNA STRUCTURE
- 7. SHOCK LEVELS IN DIFFERENT MOUNTING LOCATIONS
- 8. CONCLUSION
- 9. ACKNOWLEDGEMENT

1. BACKGROUND

- First shock wave (Mauricio,2015)
- o Exponential decay
- o In a very short time
- High energy and Pressure

Bubble oscilations (Ssu,2016)

- o Non-lineer
- Longer time duration
- Low frequency

2. OBJECTIVES: Flow chart

3. DYNAMIC DESIGN ANALYSIS METHOD (DDAM)

 Based on Shock Response Spectrum (SRS) theory

D₀ (in/sec²)

Design Value

Shock

2316 in/sec

Frequency (cps)

- Uses the modal analysis informations
- Final response is obtained by modal summation methods

cam **StX**France

4. SHOCK RESPONSE SPECTRUM (SRS)

• SRS is used to evaluate the peak response of the structures and equipment.

Building of shock response sprectrum

Shock Response Spectrum Generators

- MATLAB[®] (Acceleration time-history)
- ANSYS (Displacement time-history)

5. DDAM ANALYSIS OF A CANTILEVER BEAM

T			Main Properties of a Cantilever Beam								2	💎 🛛 🔊				
			L	72	72 (in)			1.8288 (m)					2			
	F.4		h 4.64 (in) b 1 (in)				0.117856 (m) 0.0254 (m)									
72 in														- <u>8</u>		
			E 2,9e7 (psi)				2e11 (N/m²)					1				
	Z		ρ	0.00073 (lbf∙s2/i	n ⁴)		7803.7	7 (kg/m³)			-				
			Мо	de No	Refere	nce Na	Nastran - Element size - (0.2 m)		Nastr size -	Nastran - Element size - (25.4 mm)		Nastran – SOLID- Element size – (12.7 mm)		ANSYS, SI unit, Element size- (25.4 mm)		
Part	icipatio	n facto	r			Radia (rad/se	ns Rad ec) (rad	ians /sec)	Discr.	Radiai (rad/se	ns Dis	scr.	Radians (rad/sec) Discr.	Radians (rad/sec)	, Discr.
Mo	dal effec	ctive ma	ass		1	181.	7 17	9.6	1.2%	180.6	5 0.	6%	181.9	-0.1%	180.5	0.7%
Dore	contago	oftho	modal		2	1134	4 109	94.3	3.5%	1115.	1 1.	7%	1118.9	1.3%	1109.6	2.2%
Perc	entage	orthe	mouai		3 1	31/6. 6222	.1 295	07.5 00 0	6.9%	5701	. 3.	9% 0%	5745.3	4.1%	5680 /	5.0%
епе	ctive ma	ass					60.00	S	Shock Re	esponse S	Spectrum	1 alon	g transve	rsal x-directi	on	
SRS is obtained by NRL coefficients Shell mounted, Surface ship, Elastic																
Final displacement response					0.00	[181.88	I	1118.85	Rac	l/sec 304	15.29	5745.30			
Ref	ference	Nastran -	Element si	ize - (0.2 m)		Nastran	i - Elemen (25.4 mm	t size -)	- I	Nastran – S	SOLID-Ele (12.7 mn	ement n)	t size –	ANSYS, SI unit size- (25.4	t, Element 1 mm)	
otal displacement (in- m)		Total displ (in-	acement m)	Discr.	Tota	al displa (in- n	acement n)	Dis	scr. T	otal displa (in- n	acement n)	D)iscr.	Total displacement (in/ m)	Discr.	1,3000 1,3000 2,%000 7,50000 7,50000 7,50000000000
0.22	0.0056	0.22	0.0056	-0.20%	0.	22	0.0056	-0.3	30%	0.22	0.0055	0	.60%	0.0056	-0.30%	2 NO COO 1 NO COO

6. SHOCK ANALYSIS OF AN ANTENNA STRUCTURE

- NRL Coefficient DDAM analysis
- Transient analysis
 (Direct integration method)
- DDAM analysis from time history input

Cross section of the antenna is square beams assembly

High tensile steel Properties						
E (MPa)	210000					
ρ (kg/m³)	7810					
v	0.3					
σ, (MPa)	800					

6.1. NRL Coefficient DDAM Analysis of the Antenna

- Percentage of the modal effective mass passes % 80 at each direction
- 250 Hz as an upper level in DDAM
- NRL cofficients are taken into account for deck mounting system and hull mounting system in a surface ship

	ANSYS	X direction	Y direction	Z direction		
	Frequency (Hz)	Percentage of the modal effective mass				
1	110.98	95.4	0	0		
2	115	0	94.69	0		
3	170.18	0	0	0		
4	175.49	0	0	0.36		
5	180.45	0	1.49	0		
6	189.36	1.42	0	0		
7	197.75	0	0	0		
8	226.2	0	0	89.94		
Total percen modal effe	tage of the ctive mass	96.82	96.18	90.3		

Shock response at	X directed shock- Deck mounted	X directed shock-Hull mounted	Y directed shock- Deck mounted	Y directed shock-Hull mounted	Z directed shock-Deck mounted	Z directed shock-Hull mounted
Total Displacement (mm)	0.5 Disp _{DDAM-NRL-y-HULL}	0.5 Disp _{DDAM-NRL-y} -Hull	0.5Disp _{DDAM-NRL-y-HULL}	Disp _{ddam-nrl-y-hull}	0.42 Disp _{DDAM-NRL-y-HULL}	0.83 Disp _{ddam-nrl-y-hull}
Maximum Von-Mises Stress (MPa)	0.54 $\sigma_{\text{DDAM-NRL-y-HULL}}$	0.54 $\sigma_{\text{DDAM-NRL-y-HULL}}$	0.5 $\sigma_{\text{DDAM-NRL-y-HULL}}$	σ _{DDAM-NRL-y-HULL}	$0.32 \sigma_{\text{DDAM-NRL-y-HULL}}$	0.63 $\sigma_{DDAM-NRL-y-HULL}$

6.2. Transient Analysis of the Antenna

- A simplified ship structure
- Structural properties are similar to a frigate
- Added mass is applied by Lewis coefficients
- Three different transient analysis are carried out
- Global model (Coarse mesh) and section model (Fine mesh) approaches are applied
- Global models have only finer mesh around the equipment

1:Global model - 200 mm element size around the equipment

2:Global model - 50 mm element size around the equipment

3:Section model - 50 mm element size all over the structure

10

6.2. Transient Analysis of the Antenna

Initial conditions

- TNT charge mass, mc=500 kg
- di Distance from explosive to free surface, di=54.74
 - Distance from explosive to standoff point, r=50m
 - Density of the explosive, ρc= 1600 kg/m³
 - Shock factor= 0.447

• All simulations are carried out using elastic behavior law

Transient Analysis	Global model, coarser mesh	Global model, finer mesh	Section model fine mesh	
	(0.2m) around equipment	(0.05m) around equipment	(0.05 m)	
Total response of the equipment (Max-Von-Misses stress) in MPa	1.95 $\sigma_{max-trans-section model}$	2.17 $\sigma_{max-trans-section model}$	$\sigma_{max-trans-section model}$	

- Results in the global models are completely unrealistic.
- In the global models, the flexibility of structure is not modeled correctly in high-frequency
- The results in the section model seem to be more realistic

Transient Analysis-Section Model Max Von-mises Stress

DDAM-Time History Input-X directed shock DDAM-Time History Input-Y directed shock

6.3. Comparison between the Transient Analysis and DDAM Analysis

Von-Mises Stress results comparison in section fine mesh model Section model with fine mesh is only studied DDAM is an alternative method of the transient analysis

- DDAM gives approximately 5 10 % more conservative results than the transient analysis
- DDAM is a very powerful method to define the most critical areas of the structure
- DDAM is faster than the transient analysis

Shock Analysis of On-board Equipment Submitted to Underwater Explosion

Transient analysis

 $\sigma_{max-trans-section model}$

6.4. Conclusions for Shock Analysis of the Antenna Structure

• NRL Coefficient DDAM analysis uses shock design response spectrum

Final maximum stress values in three different shock analysis methods	NRL Coefficient DDAM-Y directed shock Hull mounted	(Section model fine mesh) DDAM Analysis from Time History Input-Z directed shock	(Section model fine mesh) Transient analysis	
Total response of the equipment (Max-Von-Mises stress) in MPa	$0.77 \sigma_{max-trans-section model}$	$1.05 \sigma_{max-trans-section model}$	$\sigma_{max-trans-section model}$	

Limitations of NRL-Coefficients

- No distinction between the type and size of ships
- No definition about shock factor
- Presumes that the shock input values are same anywhere at defined mounting system
- The coefficients are very old and published in 1963

Deficiencies in the transient analysis

- The shock input signal is taken from a simplified ship structure model
- A 'dry' model with added water mass inertia by Lewis coefficient leads to very conservative results
- No damping is considered
- The propagation of the shock wave would not be same as in the global model of the ship.

7. SHOCK LEVELS IN DIFFERENT MOUNTING LOCATIONS

Freq-(Hz)

- Shock levels decrease from the bottom to top deck of the ship
- Deck mounted systems give higher response than hull mounted systems
- Shell mounted systems have the highest response among all mounting systems
- SRS at Z direction has higher shock level than SRS at x and y-directions

Shock Analysis of On-board Equipment Submitted to Underwater Explosion

icam **StX**France

8. CONCLUSION

- DDAM is the most convenient and fastest method for shock analysis of the equipments
- The available DDAM-NRL coefficients are old and not convenient for new type of the ships and warfare
- More realistic shock response spectra should be obtained for DDAM
- In order to get more realistic SRS and results, a transient analysis should be applied to refined enough mesh models
- DDAM analysis from time history input and transient analysis lead to have similar results
- The same methods can be applied for any type of equipment on any part of the ship

QUESTIONS & ANSWERS